Advanced Diploma In Data Science

  • Last Update June 8, 2021

Description

Tools Covered

  • Python (Anaconda Jupyter Notebook)
  • R (Optional)
  • Excel
  • Tableau/Power BI
  • SQL

Subjects

  1. Introduction to Data Science
  • What is Data Science?
  • What is Machine Learning?
  • What is Deep Learning?
  • What is AI?
  • Data Analytics & it’s types
  1. Introduction to Python
  • What is Python?
  • Why Python?
  • Installing Python
  • Python IDEs
  • Advanced Python Techniques Implementation in Data Science

Python Basics

  • Python Basic Data types
  • Lists
  • Slicing
  • IF statements
  • Loops
  • Dictionaries
  • Tuples
  • Functions
  • Array
  • Selection by position & Labels
  • Python modules

Data Wrangling with Python

  • Data munging techniques
  • Data Acquisition (Import & Export)
  • Indexing
  • Selection and Filtering Sorting & Summarizing
  • Descriptive Statistics
  • Combining and Merging Data Frames
  • Removing Duplicates
  • Discretization and Binning
  • String Manipulation

 

  1. Exploratory Data Analysis (EDA)
  • Why EDA?
  • Processes in EDA
  • Univariate and Bivariate Analysis
  • Descriptive Statistics
  • Data Cleaning
  • Transformation
  • Missing Value Analysis
  • Outlier Detection Analysis
  • Featured Engineering& Feature Selection
  • Data Manipulation with Excel (Optional)
  • How to find insights from data?
  1. Data Visualization
  • Design principles &Grammar of Graphics
  • Data Visualization with Python (Matplotlib & Seaborn)
  • Tableau/Power BI
  1. Statistics
  • Measures of central tendency
  • Measures of variability
  • Skewness and Kurtosis
  • Normal distribution
  • Central limit theorem
  • Confidence interval
  • T-test
  • Type I and II errors
  • Student’s T distribution
  • ANOVA
  • P-value
  • Correlation Analysis
  • Hypothesis Testing
  1. SQL
  • Introduction to SQL
  • DDL & DML Statement
  • SELECT Statement
  • AGGREGATE functions
  • WHERE, ORDER BY, DISTINCT, GROUP BY, LIKE, AND & OR clause
  • UPDATE & DELETE query
  • JOINS
  • UNION, UNION ALL, INTERSECT
  • Sub Queries
  • NULL values & DATE function
  1. Machine Learning
  • Supervised and Unsupervised Learning
  • Regression and Classification Models
  • Linear Regression with Python
  • Logistic Regression with Python
  • Tree-based algorithms – Decision Tree, Random Forest
  • Ensemble Methods
  • Clustering – K-Means, Hierarchical Clustering
  • K-Nearest Neighbours
  • Dimensionality Reduction Techniques – PCA, Factor Analysis
  • Time Series Analysis
  • Bagging and Boosting
  • Performance Measures
  • Bias-Variance Trade-Off
  • Optimization Techniques
  • Overfitting & Underfitting
  1. Capstone Project

Note: Bonus Session – How to prepare for interviews? Resume Preparation Tips

18,000.00 6,000.00